Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Leafhoppers comprise over 20,000 plant‐sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts,SulciaandNasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal‐level assembly of the aster leafhopper's genome (ALF;Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers,Nephotettix cincticeps,Homalodisca vitripennis, andEmpoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont,Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with bothSulciaand its ancient partner,Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support ofSulciaandNasuiaare only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non‐symbiotic functions are conserved across all species. The high‐quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.more » « less
-
Angert, Esther (Ed.)Abstract Planthoppers in the family Cixiidae (Hemiptera: Auchenorrhyncha: Fulgoromorpha) harbor a diverse set of obligate bacterial endosymbionts that provision essential amino acids and vitamins that are missing from their plant-sap diet. “Candidatus Sulcia muelleri” and “Ca. Vidania fulgoroidea” have been associated with cixiid planthoppers since their origin within the Auchenorrhyncha, whereas “Ca. Purcelliella pentastirinorum” is a more recent endosymbiotic acquisition. Hawaiian cixiid planthoppers occupy diverse habitats including lava tube caves and shrubby surface landscapes, which offer different nutritional resources and environmental constraints. Genomic studies have focused on understanding the nutritional provisioning roles of cixiid endosymbionts more broadly, yet it is still unclear how selection pressures on endosymbiont genes might differ between cixiid host species inhabiting such diverse landscapes, or how variation in selection might impact symbiont evolution. In this study, we sequenced the genomes of Sulcia, Vidania, and Purcelliella isolated from both surface and cave-adapted planthopper hosts from the genus Oliarus. We found that nutritional biosynthesis genes were conserved in Sulcia and Vidania genomes in inter- and intra-host species comparisons. In contrast, Purcelliella genomes retain different essential nutritional biosynthesis genes between surface- and cave-adapted planthopper species. Finally, we see the variation in selection pressures on symbiont genes both within and between host species, suggesting that strong coevolution between host and endosymbiont is associated with different patterns of molecular evolution on a fine scale that may be associated with the host diet.more » « less
-
Elgar, Mark A. (Ed.)Coevolution—reciprocal evolutionary change between interacting lineages (Thompson, 1994; see Glossary)—is thought to have played a profound role in the evolution of Life on Earth. From similar patterns across the wings of unrelated lineages of butterflies (Hoyal Cuthill and Charleston, 2015), egg mimicry of “cheating” brood parasites (Davies, 2010), to the role of animal pollinators in driving the diversification of flowering plants (Kay and Sargent, 2009), to the ubiquity of sexual reproduction and sexual conflicts (Hamilton, 2002; Arnqvist and Rowe, 2005; King et al., 2009), the formation of the eukaryotic cell (Martin et al., 2015; Imachi et al., 2020), and even the origin of living organisms themselves (Mizuuchi and Ichihashi, 2018), evolutionary changes among interacting lineages have played profound and important roles in the history of Life. This Grand Challenges inaugural contribution encompasses eclectic opinions of the editorial board as to what are the next frontiers of coevolution research in the 21st century. Coevolutionary biology is a field that has garnered a lot of attention in recent years, in part as a result of technical advances in nucleotide sequencing and bioinformatics in the burgeoning field of host–microbial interactions. Many seminal studies of coevolution examined reciprocal evolutionary change between two or a few interacting macroscopic species that imposed selective pressures on one another (e.g., insect or bird pollinators and their flowering host plants). Understanding the contexts under which coevolution occurs, as opposed to scenarios in which each partner adapts independently to a particular environment (Darwin, 1862; Stiles, 1978) is important to elucidate coevolutionary processes. A whole spectrum of organismal interactions has been examined under the lens of coevolution, providing additional context, and nuance to ecological strategies traditionally categorized as ranging from beneficial to detrimental for participating species (Figure 1). In particular, a coevolutionary perspective has revealed that even “mutualisms” are not always fully beneficial or cooperative for the partners involved. Instead, the tendency to “cheat” permeates across symbiotic partnerships (Perez-Lamarque et al., 2020). Conversely, recent evidence suggests that non-lethal predation by co-evolved predators, which has traditionally been assumed to be entirely antagonistic, may provide sessile prey with some indirect benefit through enhanced opportunities to acquire beneficial symbiotic microorganisms (Grupstra et al., 2021). Herein, we discuss some of the recent areas of active research in coevolution, restricting our focus to coevolution between interacting species.more » « less
-
Abstract Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.more » « less
An official website of the United States government
